Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Gastroenterology ; 160(1): 362-377.e13, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33039466

RESUMO

BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.


Assuntos
Adenocarcinoma/patologia , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Neoplasias Pancreáticas/patologia , Adenocarcinoma/genética , Adenocarcinoma/terapia , Biomarcadores , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Terapia de Alvo Molecular , Organoides , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Ann Surg ; 272(2): 366-376, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32675551

RESUMO

OBJECTIVE: We aimed to define preoperative clinical and molecular characteristics that would allow better patient selection for operative resection. BACKGROUND: Although we use molecular selection methods for systemic targeted therapies, these principles are not applied to surgical oncology. Improving patient selection is of vital importance for the operative treatment of pancreatic cancer (pancreatic ductal adenocarcinoma). Although surgery is the only chance of long-term survival, 80% still succumb to the disease and approximately 30% die within 1 year, often sooner than those that have unresected local disease. METHOD: In 3 independent pancreatic ductal adenocarcinoma cohorts (total participants = 1184) the relationship between aberrant expression of prometastatic proteins S100A2 and S100A4 and survival was assessed. A preoperative nomogram based on clinical variables available before surgery and expression of these proteins was constructed and compared to traditional measures, and a postoperative nomogram. RESULTS: High expression of either S100A2 or S100A4 was independent poor prognostic factors in a training cohort of 518 participants. These results were validated in 2 independent patient cohorts (Glasgow, n = 198; Germany, n = 468). Aberrant biomarker expression stratified the cohorts into 3 distinct prognostic groups. A preoperative nomogram incorporating S100A2 and S100A4 expression predicted survival and nomograms derived using postoperative clinicopathological variables. CONCLUSIONS: Of those patients with a poor preoperative nomogram score, approximately 50% of patients died within a year of resection. Nomograms have the potential to improve selection for surgery and neoadjuvant therapy, avoiding surgery in aggressive disease, and justifying more extensive resections in biologically favorable disease.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidade , Fatores Quimiotáticos/genética , Pancreatectomia/métodos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidade , Proteínas S100/genética , Idoso , Carcinoma Ductal Pancreático/cirurgia , Causas de Morte , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Nomogramas , Pancreatectomia/mortalidade , Neoplasias Pancreáticas/cirurgia , Seleção de Pacientes , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Medição de Risco , Análise de Sobrevida
3.
Cell Rep ; 31(6): 107625, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402285

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) can be divided into transcriptomic subtypes with two broad lineages referred to as classical (pancreatic) and squamous. We find that these two subtypes are driven by distinct metabolic phenotypes. Loss of genes that drive endodermal lineage specification, HNF4A and GATA6, switch metabolic profiles from classical (pancreatic) to predominantly squamous, with glycogen synthase kinase 3 beta (GSK3ß) a key regulator of glycolysis. Pharmacological inhibition of GSK3ß results in selective sensitivity in the squamous subtype; however, a subset of these squamous patient-derived cell lines (PDCLs) acquires rapid drug tolerance. Using chromatin accessibility maps, we demonstrate that the squamous subtype can be further classified using chromatin accessibility to predict responsiveness and tolerance to GSK3ß inhibitors. Our findings demonstrate that distinct patterns of chromatin accessibility can be used to identify patient subgroups that are indistinguishable by gene expression profiles, highlighting the utility of chromatin-based biomarkers for patient selection in the treatment of PDAC.


Assuntos
Adenocarcinoma/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Fator de Transcrição GATA6/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Linhagem Celular Tumoral , Humanos
4.
Nat Commun ; 6: 7758, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26169690

RESUMO

Expression of oestrogen receptor (ESR1) determines whether a breast cancer patient receives endocrine therapy, but does not guarantee patient response. The molecular factors that define endocrine response in ESR1-positive breast cancer patients remain poorly understood. Here we characterize the DNA methylome of endocrine sensitivity and demonstrate the potential impact of differential DNA methylation on endocrine response in breast cancer. We show that DNA hypermethylation occurs predominantly at oestrogen-responsive enhancers and is associated with reduced ESR1 binding and decreased gene expression of key regulators of ESR1 activity, thus providing a novel mechanism by which endocrine response is abated in ESR1-positive breast cancers. Conversely, we delineate that ESR1-responsive enhancer hypomethylation is critical in transition from normal mammary epithelial cells to endocrine-responsive ESR1-positive cancer. Cumulatively, these novel insights highlight the potential of ESR1-responsive enhancer methylation to both predict ESR1-positive disease and stratify ESR1-positive breast cancer patients as responders to endocrine therapy.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Lobular/genética , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Elementos Facilitadores Genéticos/genética , Receptor alfa de Estrogênio/genética , Adulto , Idoso , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/metabolismo , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/metabolismo , Imunoprecipitação da Cromatina , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Tamoxifeno/uso terapêutico
5.
Mol Biol Cell ; 26(13): 2475-90, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25971798

RESUMO

ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor-stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.


Assuntos
Citoesqueleto de Actina/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Tropomiosina/fisiologia , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Tropomiosina/genética , Tropomiosina/metabolismo
6.
Cell Div ; 10: 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741376

RESUMO

BACKGROUND: The cyclin E oncogene activates CDK2 to drive cells from G1 to S phase of the cell cycle to commence DNA replication. It coordinates essential cellular functions with the cell cycle including histone biogenesis, splicing, centrosome duplication and origin firing for DNA replication. The two E-cyclins, E1 and E2, are assumed to act interchangeably in these functions. However recent reports have identified unique functions for cyclins E1 and E2 in different tissues, and particularly in breast cancer. FINDINGS: Cyclins E1 and E2 localise to distinct foci in breast cancer cells as well as co-localising within the cell. Both E-cyclins are found in complex with CDK2, at centrosomes and with the splicing machinery in nuclear speckles. However cyclin E2 uniquely co-localises with NPAT, the main activator of cell-cycle regulated histone transcription. Increased cyclin E2, but not cyclin E1, expression is associated with high expression of replication-dependent histones in breast cancers. CONCLUSIONS: The preferential localisation of cyclin E1 or cyclin E2 to distinct foci indicates that each E-cyclin has unique roles. Cyclin E2 uniquely interacts with NPAT in breast cancer cells, and is associated with higher levels of histones in breast cancer. This could explain the unique correlations of high cyclin E2 expression with poor outcome and genomic instability in breast cancer.

7.
Int J Oncol ; 46(5): 2223-30, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25695794

RESUMO

Despite incremental advances in the diagnosis and treatment for pancreatic cancer (PC), the 5­year survival rate remains <5%. Novel therapies to increase survival and quality of life for PC patients are desperately needed. Epigenetic thera-peutic agents such as histone deacetylase inhibitors (HDACi) and DNA methyltransferase inhibitors (DNMTi) have demonstrated therapeutic benefits in human cancer. We assessed the efficacy of these epigenetic therapeutic agents as potential therapies for PC using in vitro and in vivo models. Treatment with HDACi [suberoylanilide hydroxamic acid (SAHA)] and DNMTi [5­AZA­2' deoxycytidine (5­AZA­dc)] decreased cell proliferation in MiaPaCa2 cells, and SAHA treatment, with or without 5­AZA­dc, resulted in higher cell death and lower DNA synthesis compared to 5­AZA­dc alone and controls (DMSO). Further, combination treatment with SAHA and 5­AZA­dc significantly increased expression of p21WAF1, leading to G1 arrest. Treatment with epigenetic agents delayed tumour growth in vivo, but did not decrease growth of established pancreatic tumours. In conclusion, these data demonstrate a potential role for epigenetic modifier drugs for the management of PC, specifically in the chemoprevention of PC, in combination with other chemotherapeutic agents.


Assuntos
Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Pancreáticas/patologia , Animais , Azacitidina/farmacologia , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Decitabina , Modelos Animais de Doenças , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Vorinostat
8.
Cancer ; 120(23): 3669-75, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25313458

RESUMO

BACKGROUND: Inherited predisposition to pancreatic cancer contributes significantly to its incidence and presents an opportunity for the development of early detection strategies. The genetic basis of predisposition remains unexplained in a high proportion of patients with familial PC (FPC). METHODS: Clinicopathologic features were assessed in a cohort of 766 patients who had been diagnosed with pancreatic ductal adenocarcinoma (PC). Patients were classified with FPC if they had ≥1 affected first-degree relatives; otherwise, they were classified with sporadic PC (SPC). RESULTS: The prevalence of FPC in this cohort was 8.9%. In FPC families with an affected parent-child pair, 71% in the subsequent generation were 12.3 years younger at diagnosis. Patients with FPC had more first-degree relatives who had an extrapancreatic malignancy (EPM) (42.6% vs 21.2; P<.0001), particularly melanoma and endometrial cancer, but not a personal history of EPM. Patients with SPC were more likely to be active smokers, have higher cumulative tobacco exposure, and have fewer multifocal precursor lesions, but these were not associated with differences in survival. Long-standing diabetes mellitus (>2 years) was associated with poor survival in both groups. CONCLUSIONS: FPC represents 9% of PC, and the risk of malignancy in kindred does not appear to be confined to the pancreas. Patients with FPC have more precursor lesions and include fewer active smokers, but other clinicopathologic factors and outcome are similar to those in patients with SPC. Furthermore, some FPC kindreds may exhibit anticipation. A better understanding of the clinical features of PC will facilitate efforts to uncover novel susceptibility genes and the development of early detection strategies.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma/genética , Neoplasias Primárias Múltiplas/genética , Neoplasias Pancreáticas/genética , Idoso , Consumo de Bebidas Alcoólicas/epidemiologia , Carcinoma/epidemiologia , Carcinoma/patologia , Carcinoma Ductal Pancreático/epidemiologia , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Estudos de Coortes , Diabetes Mellitus/epidemiologia , Neoplasias do Endométrio/genética , Feminino , Humanos , Masculino , Melanoma/genética , Pessoa de Meia-Idade , Neoplasias Primárias Múltiplas/epidemiologia , Neoplasias Primárias Múltiplas/patologia , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/patologia , Fatores de Risco , Fumar/epidemiologia
9.
BMC Cancer ; 14: 32, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24444383

RESUMO

BACKGROUND: Although MYC is an attractive therapeutic target for breast cancer treatment, it has proven challenging to inhibit MYC directly, and clinically effective pharmaceutical agents targeting MYC are not yet available. An alternative approach is to identify genes that are synthetically lethal in MYC-dependent cancer. Recent studies have identified several cell cycle kinases as MYC synthetic-lethal genes. We therefore investigated the therapeutic potential of specific cyclin-dependent kinase (CDK) inhibition in MYC-driven breast cancer. METHODS: Using small interfering RNA (siRNA), MYC expression was depleted in 26 human breast cancer cell lines and cell proliferation evaluated by BrdU incorporation. MYC-dependent and MYC-independent cell lines were classified based on their sensitivity to siRNA-mediated MYC knockdown. We then inhibited CDKs including CDK4/6, CDK2 and CDK1 individually using either RNAi or small molecule inhibitors, and compared sensitivity to CDK inhibition with MYC dependence in breast cancer cells. RESULTS: Breast cancer cells displayed a wide range of sensitivity to siRNA-mediated MYC knockdown. The sensitivity was correlated with MYC protein expression and MYC phosphorylation level. Sensitivity to siRNA-mediated MYC knockdown did not parallel sensitivity to the CDK4/6 inhibitor PD0332991; instead MYC-independent cell lines were generally sensitive to PD0332991. Cell cycle arrest induced by MYC knockdown was accompanied by a decrease in CDK2 activity, but inactivation of CDK2 did not selectively affect the viability of MYC-dependent breast cancer cells. In contrast, CDK1 inactivation significantly induced apoptosis and reduced viability of MYC-dependent cells but not MYC- independent cells. This selective induction of apoptosis by CDK1 inhibitors was associated with up-regulation of the pro-apoptotic molecule BIM and was p53-independent. CONCLUSIONS: Overall, these results suggest that further investigation of CDK1 inhibition as a potential therapy for MYC-dependent breast cancer is warranted.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/enzimologia , Proteína Quinase CDC2/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteína Quinase CDC2/genética , Proteína Quinase CDC2/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Quinase 2 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Proteínas de Membrana/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção , Proteína Supressora de Tumor p53/metabolismo
10.
Breast Cancer Res ; 16(3): 101, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25928145

RESUMO

One of the best-characterized oncogenic mechanisms in breast cancer is the aberrant activation of phosphatidylinositol-3-kinase, protein kinase B, and mammalian target of rapamycin signaling. In both endocrine-resistant disease and breast cancer stem cells, this is commonly caused by specific genetic lesions or amplification of key pathway components or both. These observations have generated two interesting hypotheses. Firstly, do these genetic anomalies provide clinically significant biomarkers predictive of endocrine resistance? Secondly, do tamoxifen-resistant breast cancer cells emerge from a stem-like cell population? New studies, published in Breast Cancer Research, raise the possibility that these hypotheses are intrinsically linked.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Tamoxifeno/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Mutação , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fosfatidilinositol 3-Quinase/genética
11.
Cell Commun Signal ; 11: 73, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24083678

RESUMO

BACKGROUND: The non-steroidal anti-inflammatory drug (NSAID) sulindac has shown efficacy in preventing colorectal cancer. This potent anti-tumorigenic effect is mediated through multiple cellular pathways but is also accompanied by gastrointestinal side effects, such as colon inflammation. We have recently shown that sulindac can cause up-regulation of pro-inflammatory factors in the mouse colon mucosa. The aim of this study was to determine the signaling pathways that mediate the transcriptional activation of pro-inflammatory cytokines in colon cancer epithelial cells treated with sulindac sulfide. RESULTS: We found that sulindac sulfide increased NF-κB signaling in HCT-15, HCT116, SW480 and SW620 cells, although the level of induction varied between cell lines. The drug caused a decrease in IκBα levels and an increase of p65(RelA) binding to the NF-κB DNA response element. It induced expression of IL-8, ICAM1 and A20, which was inhibited by the NF-κB inhibitor PDTC. Sulindac sulfide also induced activation of the AP-1 transcription factor, which co-operated with NF-κB in up-regulating IL-8. Up-regulation of NF-κB genes was most prominent in conditions where only a subset of cells was undergoing apoptosis. In TNFα stimulated conditions the drug treatment inhibited phosphorylation on IκBα (Ser 32) which is consistent with previous studies and indicates that sulindac sulfide can inhibit TNFα-induced NF-κB activation. Sulindac-induced upregulation of NF-κB target genes occurred early in the proximal colon of mice given a diet containing sulindac for one week. CONCLUSIONS: This study shows for the first time that sulindac sulfide can induce pro-inflammatory NF-κB and AP-1 signaling as well as apoptosis in the same experimental conditions. Therefore, these results provide insights into the effect of sulindac on pro-inflammatory signaling pathways, as well as contribute to a better understanding of the mechanism of sulindac-induced gastrointestinal side effects.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , NF-kappa B/metabolismo , Sulindaco/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Interleucina-8/biossíntese , Interleucina-8/genética , Camundongos , Camundongos Endogâmicos C57BL , Sulindaco/farmacologia , Fator de Transcrição AP-1/metabolismo , Regulação para Cima
12.
Genome Med ; 5(8): 78, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24004612

RESUMO

BACKGROUND: Pancreatic cancer is one of the most lethal and molecularly diverse malignancies. Repurposing of therapeutics that target specific molecular mechanisms in different disease types offers potential for rapid improvements in outcome. Although HER2 amplification occurs in pancreatic cancer, it is inadequately characterized to exploit the potential of anti-HER2 therapies. METHODS: HER2 amplification was detected and further analyzed using multiple genomic sequencing approaches. Standardized reference laboratory assays defined HER2 amplification in a large cohort of patients (n = 469) with pancreatic ductal adenocarcinoma (PDAC). RESULTS: An amplified inversion event (1 MB) was identified at the HER2 locus in a patient with PDAC. Using standardized laboratory assays, we established diagnostic criteria for HER2 amplification in PDAC, and observed a prevalence of 2%. Clinically, HER2- amplified PDAC was characterized by a lack of liver metastases, and a preponderance of lung and brain metastases. Excluding breast and gastric cancer, the incidence of HER2-amplified cancers in the USA is >22,000 per annum. CONCLUSIONS: HER2 amplification occurs in 2% of PDAC, and has distinct features with implications for clinical practice. The molecular heterogeneity of PDAC implies that even an incidence of 2% represents an attractive target for anti-HER2 therapies, as options for PDAC are limited. Recruiting patients based on HER2 amplification, rather than organ of origin, could make trials of anti-HER2 therapies feasible in less common cancer types.

13.
FEBS J ; 280(21): 5237-57, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23876235

RESUMO

Acquired resistance to the anti-estrogen tamoxifen remains a significant challenge in breast cancer management. In this study, we used an integrative approach to characterize global protein expression and tyrosine phosphorylation events in tamoxifen-resistant MCF7 breast cancer cells (TamR) compared with parental controls. Quantitative mass spectrometry and computational approaches were combined to identify perturbed signalling networks, and candidate regulatory proteins were functionally interrogated by siRNA-mediated knockdown. Network analysis revealed that cellular metabolism was perturbed in TamR cells, together with pathways enriched for proteins associated with growth factor, cell-cell and cell matrix-initiated signalling. Consistent with known roles for Ras/MAPK and PI3-kinase signalling in tamoxifen resistance, tyrosine-phosphorylated MAPK1, SHC1 and PIK3R2 were elevated in TamR cells. Phosphorylation of the tyrosine kinase Yes and expression of the actin-binding protein myristoylated alanine-rich C-kinase substrate (MARCKS) were increased two- and eightfold in TamR cells respectively, and these proteins were selected for further analysis. Knockdown of either protein in TamR cells had no effect on anti-estrogen sensitivity, but significantly decreased cell motility. MARCKS expression was significantly higher in breast cancer cell lines than normal mammary epithelial cells and in ER-negative versus ER-positive breast cancer cell lines. In primary breast cancers, cytoplasmic MARCKS staining was significantly higher in basal-like and HER2 cancers than in luminal cancers, and was independently predictive of poor survival in multivariate analyses of the whole cohort (P < 0.0001) and in ER-positive patients (P = 0.0005). These findings provide network-level insights into the molecular alterations associated with the tamoxifen-resistant phenotype, and identify MARCKS as a potential biomarker of therapeutic responsiveness that may assist in stratification of patients for optimal therapy.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/farmacologia , Apoptose , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/patologia , Adesão Celular , Ciclo Celular , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Técnicas Imunoenzimáticas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Substrato Quinase C Rico em Alanina Miristoilada , Fosforilação/efeitos dos fármacos , Mapas de Interação de Proteínas , Proteômica , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Análise Serial de Tecidos , Células Tumorais Cultivadas
14.
Mol Cancer Ther ; 12(9): 1874-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23861345

RESUMO

Overexpression of the antiapoptotic factor BCL-2 is a frequent feature of malignant disease and is commonly associated with poor prognosis and resistance to conventional chemotherapy. In breast cancer, however, high BCL-2 expression is associated with favorable prognosis, estrogen receptor (ER) positivity, and low tumor grade, whereas low expression is included in several molecular signatures associated with resistance to endocrine therapy. In the present study, we correlate BCL-2 expression and DNA methylation profiles in human breast cancer and in multiple cell models of acquired endocrine resistance to determine whether BCL-2 hypermethylation could provide a useful biomarker of response to cytotoxic therapy. In human disease, diminished expression of BCL-2 was associated with hypermethylation of the second exon, in a region that overlapped a CpG island and an ER-binding site. Hypermethylation of this region, which occurred in 10% of primary tumors, provided a stronger predictor of patient survival (P = 0.019) when compared with gene expression (n = 522). In multiple cell models of acquired endocrine resistance, BCL-2 expression was significantly reduced in parallel with increased DNA methylation of the exon 2 region. The reduction of BCL-2 expression in endocrine-resistant cells lowered their apoptotic threshold to antimitotic agents: nocodazole, paclitaxel, and the PLK1 inhibitor BI2536. This phenomenon could be reversed with ectopic expression of BCL-2, and rescued with the BCL-2 inhibitor ABT-737. Collectively, these data imply that BCL-2 hypermethylation provides a robust biomarker of response to current and next-generation cytotoxic agents in endocrine-resistant breast cancer, which may prove beneficial in directing therapeutic strategy for patients with nonresectable, metastatic disease.


Assuntos
Antimitóticos/farmacologia , Compostos de Bifenilo/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Metilação de DNA , Genes bcl-2 , Nitrofenóis/farmacologia , Sulfonamidas/farmacologia , Antimitóticos/uso terapêutico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzamidas/farmacologia , Biomarcadores/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Células MCF-7 , Metástase Neoplásica , Nocodazol/farmacologia , Paclitaxel/farmacologia , Piperazinas/farmacologia , Prognóstico , Pteridinas
15.
J Clin Oncol ; 31(10): 1348-56, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23439753

RESUMO

PURPOSE: Individuals with adenocarcinoma of the ampulla of Vater demonstrate a broad range of outcomes, presumably because these cancers may arise from any one of the three epithelia that converge at that location. This variability poses challenges for clinical decision making and the development of novel therapeutic strategies. PATIENTS AND METHODS: We assessed the potential clinical utility of histomolecular phenotypes defined using a combination of histopathology and protein expression (CDX2 and MUC1) in 208 patients from three independent cohorts who underwent surgical resection for adenocarcinoma of the ampulla of Vater. RESULTS: Histologic subtype and CDX2 and MUC1 expression were significant prognostic variables. Patients with a histomolecular pancreaticobiliary phenotype (CDX2 negative, MUC1 positive) segregated into a poor prognostic group in the training (hazard ratio [HR], 3.34; 95% CI, 1.69 to 6.62; P < .001) and both validation cohorts (HR, 5.65; 95% CI, 2.77 to 11.5; P < .001 and HR, 2.78; 95% CI, 1.25 to 7.17; P = .0119) compared with histomolecular nonpancreaticobiliary carcinomas. Further stratification by lymph node (LN) status defined three clinically relevant subgroups: one, patients with histomolecular nonpancreaticobiliary (intestinal) carcinoma without LN metastases who had an excellent prognosis; two, those with histomolecular pancreaticobiliary carcinoma with LN metastases who had a poor outcome; and three, the remainder of patients (nonpancreaticobiliary, LN positive or pancreaticobiliary, LN negative) who had an intermediate outcome. CONCLUSION: Histopathologic and molecular criteria combine to define clinically relevant histomolecular phenotypes of adenocarcinoma of the ampulla of Vater and potentially represent distinct diseases with significant implications for current therapeutic strategies, the ability to interpret past clinical trials, and future trial design.


Assuntos
Adenocarcinoma/metabolismo , Ampola Hepatopancreática/metabolismo , Neoplasias do Ducto Colédoco/metabolismo , Proteínas de Homeodomínio/biossíntese , Mucina-1/biossíntese , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Ampola Hepatopancreática/patologia , Fator de Transcrição CDX2 , Estudos de Coortes , Neoplasias do Ducto Colédoco/patologia , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Queratina-20/biossíntese , Queratina-7/biossíntese , Masculino , Pessoa de Meia-Idade , Mucina-2/biossíntese , Análise Multivariada , Estadiamento de Neoplasias , Prognóstico
16.
Cell Cycle ; 12(4): 606-17, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23324395

RESUMO

Cyclins E1 drives the initiation of DNA replication, and deregulation of its periodic expression leads to mitotic delay associated with genomic instability. Since it is not known whether the closely related protein cyclin E2 shares these properties, we overexpressed cyclin E2 in breast cancer cells. This did not affect the duration of mitosis, nor did it cause an increase in p107 association with CDK2. In contrast, cyclin E1 overexpression led to inhibition of the APC complex, prolonged metaphase and increased p107 association with CDK2. Despite these different effects on the cell cycle, elevated levels of either cyclin E1 or E2 led to hallmarks of genomic instability, i.e., an increased proportion of abnormal mitoses, micronuclei and chromosomal aberrations. Cyclin E2 induction of genomic instability by a mechanism distinct from cyclin E1 indicates that these two proteins have unique functions in a cancer setting.


Assuntos
Ciclina E/genética , Ciclinas/genética , Regulação Neoplásica da Expressão Gênica , Mitose , Proteínas Oncogênicas/genética , Linhagem Celular Tumoral , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Ciclinas/metabolismo , Replicação do DNA , Genoma Humano , Instabilidade Genômica , Humanos , Metáfase , Micronúcleos com Defeito Cromossômico , Microscopia de Fluorescência , Proteínas Oncogênicas/metabolismo , Proteína p107 Retinoblastoma-Like/genética , Proteína p107 Retinoblastoma-Like/metabolismo
17.
Cell Cycle ; 12(4): 596-605, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23324394

RESUMO

Cyclin E1 is expressed at the G 1/S phase transition of the cell cycle to drive the initiation of DNA replication and is degraded during S/G2M. Deregulation of its periodic degradation is observed in cancer and is associated with increased proliferation and genomic instability. We identify that in cancer cells, unlike normal cells, the closely related protein cyclin E2 is expressed predominantly in S phase, concurrent with DNA replication. This occurs at least in part because the ubiquitin ligase component that is responsible for cyclin E1 downregulation in S phase, Fbw7, fails to effectively target cyclin E2 for proteosomal degradation. The distinct cell cycle expression of the two E-type cyclins in cancer cells has implications for their roles in genomic instability and proliferation and may explain their associations with different signatures of disease.


Assuntos
Proteínas de Ciclo Celular/genética , Ciclina E/genética , Ciclinas/genética , Proteínas F-Box/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Oncogênicas/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Ciclina E/metabolismo , Ciclinas/metabolismo , Replicação do DNA , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Genoma Humano , Instabilidade Genômica , Humanos , Proteínas Oncogênicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
18.
Breast Cancer Res ; 14(6): R143, 2012 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-23127292

RESUMO

INTRODUCTION: The prognostic significance of p53 protein expression in early breast cancer remains uncertain, with some but not all studies finding an association with poorer outcomes. Estrogen receptor (ER) expression is both a positive prognostic marker and predictive of response to endocrine therapies. The relationship between these biomarkers is unknown. METHODS: We constructed tissue microarrays (TMAs) from available pathological material from 1113 patients participating in two randomized clinical trials comparing endocrine therapy alone versus chemo-endocrine therapy in node-negative breast cancer. Expression of p53 defined as >10% positive nuclei was analyzed together with prior immunohistochemical assays of ER performed at central pathological review of whole tumor sections. RESULTS: ER was present (i.e. >1% positive tumor cell nuclei) in 80.1% (880/1092). p53 expression was significantly more frequent when ER was absent, 125/212 (59%) than when ER was present, 171/880 (19%), p <0.0001. A significant qualitative interaction was observed such that p53 expression was associated with better disease-free survival (DFS) and overall survival (OS) among patients whose tumors did not express ER, but worse DFS and OS among patients whose tumors expressed ER. The interaction remained significant after allowance for pathologic variables, and treatment. Similar effects were seen when luminal and non-luminal intrinsic subtypes were compared. CONCLUSIONS: Interpretation of the prognostic significance of p53 expression requires knowledge of concurrent expression of ER. The reason for the interaction between p53 and ER is unknown but may reflect qualitatively different p53 mutations underlying the p53 expression in tumors with or without ER expression. TRIAL REGISTRATION: Current Controlled Trials ACTRN12607000037404 (Trial VIII) and ACTRN12607000029493 (Trial IX).


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Receptores de Estrogênio/biossíntese , Tamoxifeno/uso terapêutico , Proteína Supressora de Tumor p53/biossíntese , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/biossíntese , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Ciclofosfamida/uso terapêutico , Intervalo Livre de Doença , Feminino , Fluoruracila/uso terapêutico , Gosserrelina/uso terapêutico , Humanos , Linfonodos , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Análise Serial de Tecidos , Resultado do Tratamento
19.
PLoS One ; 7(7): e40466, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808167

RESUMO

In the present study, we have taken the novel approach of using an in vitro model representative of tamoxifen-withdrawal subsequent to clinical relapse to achieve a greater understanding of the mechanisms that serve to maintain the resistant-cell phenotype, independent of any agonistic impact of tamoxifen, to identify potential novel therapeutic approaches for this disease state. Following tamoxifen withdrawal, tamoxifen-resistant MCF-7 cells conserved both drug resistance and an increased basal rate of proliferation in an oestrogen deprived environment, despite reduced epidermal growth-factor receptor expression and reduced sensitivity to gefitinib challenge. Although tamoxifen-withdrawn cells retained ER expression, a sub-set of ER-responsive genes, including pS2 and progesterone receptor (PgR), were down-regulated by promoter DNA methylation, as confirmed by clonal bisulphite sequencing experiments. Following promoter demethylation with 5-Azacytidine (5-Aza), the co-addition of oestradiol (E2) restored gene expression in these cells. In addition, 5-Aza/E2 co-treatment induced a significant anti-proliferative effect in the tamoxifen-withdrawn cells, in-contrast to either agent used alone. Microarray analysis was undertaken to identify genes specifically up regulated by this co-treatment. Several anti-proliferative gene candidates were identified and their promoters were confirmed as more heavily methylated in the tamoxifen resistant vs sensitive cells. One such gene candidate, growth differentiation factor 15 (GDF15), was carried forward for functional analysis. The addition of 5-Aza/E2 was sufficient to de-methylate and activate GDF15 expression in the tamoxifen resistant cell-lines, whilst in parallel, treatment with recombinant GDF15 protein decreased cell survival. These data provide evidence to support a novel concept that long-term tamoxifen exposure induces epigenetic silencing of a cohort of oestrogen-responsive genes whose function is associated with negative proliferation control. Furthermore, reactivation of such genes using epigenetic drugs could provide a potential therapeutic avenue for the management of tamoxifen-resistant breast cancer.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Estrogênios/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Tamoxifeno/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Azacitidina/farmacologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Gefitinibe , Genes Neoplásicos/genética , Fator 15 de Diferenciação de Crescimento/farmacologia , Humanos , Células MCF-7 , Quinazolinas/farmacologia , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteínas Recombinantes/farmacologia , Fator Trefoil-1 , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
20.
Mol Cancer Ther ; 11(7): 1488-99, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22564725

RESUMO

Cyclin E2, but not cyclin E1, is included in several gene signatures that predict disease progression in either tamoxifen-resistant or metastatic breast cancer. We therefore examined the role of cyclin E2 in antiestrogen resistance in vitro and its potential for therapeutic targeting through cyclin-dependent kinase (CDK) inhibition. High expression of CCNE2, but not CCNE1, was characteristic of the luminal B and HER2 subtypes of breast cancer and was strongly predictive of shorter distant metastasis-free survival following endocrine therapy. After antiestrogen treatment of MCF-7 breast cancer cells, cyclin E2 mRNA and protein were downregulated and cyclin E2-CDK2 activity decreased. However, this regulation was lost in tamoxifen-resistant (MCF-7 TAMR) cells, which overexpressed cyclin E2. Expression of either cyclin E1 or E2 in T-47D breast cancer cells conferred acute antiestrogen resistance, suggesting that cyclin E overexpression contributes to the antiestrogen resistance of tamoxifen-resistant cells. Ectopic expression of cyclin E1 or E2 also reduced sensitivity to CDK4, but not CDK2, inhibition. Proliferation of tamoxifen-resistant cells was inhibited by RNAi-mediated knockdown of cyclin E1, cyclin E2, or CDK2. Furthermore, CDK2 inhibition of E-cyclin overexpressing cells and tamoxifen-resistant cells restored sensitivity to tamoxifen or CDK4 inhibition. Cyclin E2 overexpression is therefore a potential mechanism of resistance to both endocrine therapy and CDK4 inhibition. CDK2 inhibitors hold promise as a component of combination therapies in endocrine-resistant disease as they effectively inhibit cyclin E1 and E2 overexpressing cells and enhance the efficacy of other therapeutics.


Assuntos
Neoplasias da Mama/genética , Quinase 2 Dependente de Ciclina/antagonistas & inibidores , Ciclinas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina E/genética , Moduladores de Receptor Estrogênico/farmacologia , Feminino , Perfilação da Expressão Gênica , Humanos , Estadiamento de Neoplasias , Proteínas Oncogênicas/genética , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...